

DEFENCE AND SPACE

MULTI-LEVEL INFORMATION FUSION AND ACTIVE PERCEPTION FRAMEWORK TOWARDS A MILITARY APPLICATION

Vasnier Kilian NATO SET-262 - 6th November 2018

- I. Motivations of work
- II. Scientific Challenges
- III. Military scenario and environment modelling
- IV. Most Valuable Variables Analysis
- V. Example
- VI. Conclusion

1) Situation Awareness

Figure 1 : Endley's model of Situation Awareness

2) Crisis situation

Strong constraints :

- Speed of information aquisition
- Limited ressources

3) Active Perception

Passive perception :

- Get all possible information with all available sensors
- Only based on quantitative cursor to get information

Active perception :

- Need to search for relevant information
- Define dynamically what to observe
- Find the best sensor to get information on relevant object

I. Motivations of work

II. Scientific Challenges

III. Military scenario and environment modelling

- IV. Most Valuable Variables Analysis
- V. Example
- VI. Conclusion

1) Scientific motivation

Question :

In a **dynamic environment**, which variables are the most valuable to observe to **maximize the information gain** ?

Key-feature :

Most Valuable Variable (MVV) : variable that bring more information than the others to reduce ambiguity on the state of the object

2) Why defining these MVV ?

Constraints and state-of-the-art:

- Crisis situation implies two major problematics :
 - Information acquisition speed
 - Limited resources
- In the literature :
 - Mostly passive perception approaches
 - Optimisation of the variables / sensors association problem

Our approach :

- Active Perception framework
- Add an MVV analysis process to bring a qualitative cursor on information

3) Active Perception Framework

Figure 2 : adapted from the framework in [Zhang & al, 2012]

- I. Motivations of work
- II. Scientific Challenges

III. Military scenario and environment modelling

- IV. Most Valuable Variables Analysis
- V. Example
- **VI.** Conclusion

1) Military scenario - Context

Scenario :

- Two bordering countries are in conflict
- The enemy country (A) tries to invade the allied country (B) with military forces

Objectives :

- Define the strategy of the enemy
 - By which point will he attack ?
- Represent the threat and localise it
- Understand the phase of the attack

2) HPIZ and Attack Point

High-Priority Information Zones :

- HPIZ : zones considered as important to observe to understand enemy's manoeuvres and identify the threat
- HPIZ are given by intelligence services (B2) before the attack

Attack Points :

 Points of arrival of enemy's forces that we phase 1 need to define to prepare the counteroffensive

DGA GREYC AIRBUS

3) Evironment modelling

DGA GREYC AIRBUS

4) Scenario modelling

5) Example of military scenario

6) Threat propagation

Threat score by HPIZ :

 Each company has a threat score corresponding to its dangerosity and its role in the assault

$$P\left(X_{p_{m}} = I_{HPIZ_{i}}\right) = \frac{TA_{HPIZ_{i}}}{\sum_{HPIZ_{j} \in \pi(u(HPIZ_{i}))} TA_{HPIZ_{i}}}$$

$$P(\theta_{AP} = AP_l) = \alpha \prod_{I_{HPIZ_i} \in u(AP_l)} \sum_{I_{HPIZ_j} \in u(I_{HPIZ_i})} P\left(X_{p_m} = I_{HPIZ_i}\right) \cdot P\left(I_{HPIZ_i} \mid I_{HPIZ_j}\right)$$

- I. Motivations of work
- II. Scientific Challenges
- III. Military scenario and environment modelling

IV. Most Valuable Variables Analysis

V. Example

VI. Conclusion

1) Reliability score

Shannon entropy :

$$H(X) = -\sum_{t=1}^{n} P(x_i) \log P(x_i)$$

Reliability score of a variable :

- Reliability threshold : $\Gamma = 0.20$
- Trusted variable : $H(X_i) < \Gamma$
- Aim : $\forall \theta \in \Theta, H(\theta) < \Gamma$

2) MVV analysis algorithm

(a) Hypothesis representation

(b) Most valuable variables

- I. Motivations of work
- II. Scientific Challenges
- III. Military scenario and environment modelling
- IV. Most Valuable Variables Analysis
- V. Example

VI. Conclusion

1) Example of military scenario

2) Military scenario example (1)

Sensor groups	t_1	t_2	t ₃	t_4
Group 1	HPZI ₆	HPZI ₇	$HPZI_{10}$	$HPZI_{10}$
Group 2	$HPZI_4$	$HPZI_2$	$HPZI_5$	HPZI₀
Group 3	$HPZI_5$	$HPZI_1$	$HPZI_9$	$HPZI_5$

	t_1	t_2	t ₃	t4	t_5
θ_{AP}	0.96	0.66	0.35	0.27	Ø
θ_{p_1}	Ø	Ø	Ø	Ø	Ø
θ_{p_2}	0.35	0.47	Ø	Ø	Ø
θ_{p_3}	0.97	0.43	0.41	0.36	0,26
θ_{P_A}	0.96	0.62	0.44	0.22	Ø

Attack points	t_1	t_2	t ₃	t ₄
$P(\theta_{AP} = AP_1)$	0.181	0.151	0.088	0.008
$P(\theta_{AP} = AP_2)$	0.366	0.498	0.87	0.945
$P(\theta_{AP} = AP_3)$	0.272	0.294	0.085	0.042
$P(\theta_{AP} = AP_4)$	0.181	0.057	0.013	0,005

DGA GREYC AIRBUS

2) Military scenario example (2)

Sensor groups	t_1	<i>t</i> ₂	t ₃	t_4
Group 1	$HPZI_6$	HPZI ₇	$HPZI_{10}$	$HPZI_{10}$
Group 2	$HPZI_4$	$HPZI_2$	$HPZI_5$	HPZI₀
Group 3	$HPZI_5$	$HPZI_1$	$HPZI_9$	$HPZI_5$

	t_1	<i>t</i> ₂	t ₃	t4	t_5
θ_{AP}	0.96	0.66	0.35	0.27	Ø
θ_{p_1}	Ø	Ø	Ø	Ø	Ø
θ_{p_2}	0.35	0.47	Ø	Ø	Ø
θ_{p_3}	0.97	0.43	0.41	0.36	0,26
θ_{D_A}	0.96	0.62	0.44	0.22	Ø

Attack points	t_1	t_2	t ₃	t ₄
$P(\theta_{AP} = AP_1)$	0.181	0.151	0.088	0.008
$P(\theta_{AP} = AP_2)$	0.366	0.498	0.87	0.945
$P(\theta_{AP} = AP_3)$	0.272	0.294	0.085	0.042
$P(\theta_{AP} = AP_4)$	0.181	0.057	0.013	0,005

2) Military scenario example (3)

Sensor groups	t_1	<i>t</i> ₂	t ₃	t ₄
Group 1	$HPZI_6$	HPZI ₇	$HPZI_{10}$	$HPZI_{10}$
Group 2	HPZI ₄	$HPZI_2$	HPZI ₅	HPZI ₉
Group 3	HPZI ₅	$HPZI_1$	HPZI ₉	$HPZI_5$

	t_1	t_2	t ₃	t4	t_5
θ_{AP}	0.96	0.66	0.35	0.27	Ø
θ_{p_1}	Ø	Ø	Ø	Ø	Ø
θ_{p_2}	0.35	0.47	Ø	Ø	Ø
θ_{p_3}	0.97	0.43	0.41	0.36	0,26
θ_{PA}	0.96	0.62	0.44	0.22	Ø

Attack points	t_1	t_2	t ₃	t ₄
$P(\theta_{AP} = AP_1)$	0.181	0.151	0.088	0.008
$P(\theta_{AP} = AP_2)$	0.366	0.498	0.87	0.945
$P(\theta_{AP} = AP_3)$	0.272	0.294	0.085	0.042
$P(\theta_{AP} = AP_4)$	0.181	0.057	0.013	0,005

2) Military scenario example (4)

Sensor groups	t_1	t_2	t ₃	t_4
Group 1	$HPZI_6$	HPZI ₇	$HPZI_{10}$	$HPZI_{10}$
Group 2	HPZI ₄	$HPZI_2$	$HPZI_5$	HPZI ₉
Group 3	HPZI ₅	$HPZI_1$	$HPZI_9$	HPZI ₅

	t_1	t_2	t ₃	t_4	t_5
θ_{AP}	0.96	0.66	0.35	0.27	Ø
θ_{p_1}	Ø	Ø	Ø	Ø	Ø
θ_{p_2}	0.35	0.47	Ø	Ø	Ø
θ_{p_3}	0.97	0.43	0.41	0.36	0,26
θ_{p_4}	0.96	0.62	0.44	0.22	Ø

Attack points	t_1	t_2	t ₃	t ₄
$P(\theta_{AP} = AP_1)$	0.181	0.151	0.088	0.008
$P(\theta_{AP} = AP_2)$	0.366	0.498	0.87	0.945
$P(\theta_{AP} = AP_3)$	0.272	0.294	0.085	0.042
$P(\theta_{AP} = AP_4)$	0.181	0.057	0.013	0,005

- I. Motivations of work
- II. Scientific Challenges
- III. Military scenario and environment modelling
- IV. Most Valuable Variables Analysis
- V. Example

VI. Conclusion

Conclusion

Contribution :

- Military scenario formalisation
- First heuristic of threat propagation
- Application of MVV analysis to this scenario

Next steps :

- Threat propagation improvement (possibility of turning back, dynamic path, ...)
- Sensor management with multi-criteria utility function
 - Time
 - Resources (energy)
 - Sensor dependence
 - ...

Some references

- [Vasnier & al, 2018a]: VASNIER, Kilian, MOUADDIB, Abdel-Illah, GATEPAILLE, Sylvain, et al. Multi-Level Information Fusion Approach with Dynamic Bayesian Networks for an Active Perception of the environment. In: 2018 21st International Conference on Information Fusion (FUSION). IEEE, 2018. p. 1844-1850.
- [Zhang & al, 2012] : ZHANG, Yongmian et JI, Qiang. Active and dynamic information fusion for multisensor systems with dynamic Bayesian networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2006, vol. 36, no 2, p. 467-472.
- [LIU & al, 2018] : LIU, Bin. A Survey on Trust Modeling from a Bayesian Perspective. arXiv preprint arXiv:1806.03916, 2018.
- [Rogova & al, 2009] : ROGOVA, Galina L. Context-awareness in crisis management. In : Military Communications Conference, 2009. MILCOM 2009. IEEE. IEEE, 2009. p. 1-7.
- [Scott & al, 2004] : SCOTT, Peter et ROGOVA, Galina. Crisis management in a data fusion synthetic task environment. Proceedings of FUSION 2004, 2004.
- [Laskey & al, 2012] : LASKEY, Kathryn Blackmond et DA COSTA, Paulo. Of starships and klingons: Bayesian logic for the 23rd century. arXiv preprint arXiv:1207.1354, 2012.
- [Xiong & al, 2002]: XIONG, Ning et SVENSSON, Per. Multi-sensor management for information fusion: issues and approaches. Information fusion, 2002, vol. 3, no 2, p. 163-186.
- [Kristen & al, 1995] : KRISTENSEN, Steen. Sensor planning with Bayesian decision analysis. 1995.

Thank you

